Preconditioning Indefinite Systems in Interior Point Methods for Large Scale Linear Optimization
نویسندگان
چکیده
We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve the augmented system and look for a suitable preconditioner. An explicit null space representation of linear constraints is constructed by using a nonsingular basis matrix identified from an estimate of the optimal partition in the linear program. This is achieved by means of recently developed efficient basis matrix factorisation techniques which exploit hyper-sparsity and are used in implementations of the revised simplex method. The approach has been implemented within the HOPDM interior point solver and applied to medium and large-scale problems from public domain test collections. Computational experience is encouraging. Preconditioning Indefinite Systems in IPMs for LP 1
منابع مشابه
Preconditioning indefinite systems in interior point methods for large scale linear optimisation
We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...
متن کاملPreconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization
A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...
متن کاملPreconditioning Indefinite Systems in Interior Point Methods for Optimization
Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless a...
متن کاملCOAP 2004 Best
In each year, the Computational Optimization and Applications (COAP) editorial board selects a paper from the preceding year’s COAP publications for the “Best Paper Award”. The recipients of the award for papers published in 2004 are Luca Bergamaschi, University of Padova, Italy, Jacek Gondzio, University of Edinburgh, Scotland, and Giovanni Zilli, University of Padova, Italy, for their paper “...
متن کاملMultigrid Preconditioning of Linear Systems for Interior Point Methods Applied to a Class of Box-constrained Optimal Control Problems
In this article we construct and analyze multigrid preconditioners for discretizations of operators of the form Dλ + K K, where Dλ is the multiplication with a relatively smooth function λ > 0 and K is a compact linear operator. These systems arise when applying interior point methods to the minimization problem minu 1 2 (||Ku − f || + β||u||) with box-constraints u 6 u 6 u on the controls. The...
متن کامل